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A Technique for Computing Dispersion Characteristics

of Shielded Microstrip Lines

TATSUO ITOH, SENIOR MEMBER, IEEE, AND

RAJ MITTRA, FELLOW, IEEE

Abstract-The boundary value problem associated with the

shielded inicrostrip-liie structure is formulated in terms of a

rigorous hybrid-mode representation. The resulting equations are

subsequently transformed, via the application of Galerkink method

in the spectral domain, to yield a characteristic equation for the

dispersion properties of shielded microstrip lines. Among the ad-

vantages of the method are its simplicity and rapid convergence.

Numerical results are included for several d~erent structural

parameters. These are compared” with other available data and

with some experimental results.

I. INTRODUCTION

With the increasing use of microstrip-line circuits at higher fre-
quencies, a number of workers have studied the dispersion properties
of microstrip lines [1]. Mittra and Itoh [2] used the singular integral

equation approach for the shielded microstrip line, while Krage and
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Haddad [3] employed the Fourier-series expansion of the fields in

the shielded microstrip line followed by ? point-matching technique.
Itoh and Mittra have recently demonstrated the application of a

novel technique, called the spectral-domain analysis, to the problem
of determining the dispersion characteristics of open microstrip

lines [4]. In thw short paper the technique just mentioned is ex-

tended to apply to the shielded microstrip-line problem. Some of the

unique features of the method, which is based on the application of
Galerkin’s method in the finite Fourier transform domain, are as
follows: a) the spectral method is numerically simpler and more
efficient than the conventional space-domain techniques. This is due

primarily to the fact that in the present method solutione are ex-
tracted from algebraic equations rather than from coupled integral

equations typically appearing in the conventional space-domain

a.ppro.ach~s; b) t% usc of transforms allows one to convert convolu-
tions mto algebralc products, thus avoiding the necessity of numerical
evaluation of complicated integrals, a process which is often ex-

tremely time consuming; c) typically, eigenvalues for the propaga-

tion constants are obtained from a determinantal equation, and the
behavior of the field distribution of the eigenmodes are not readily

discermble [2]. However, in the present method the physical nature

of the field corresponding to each mode -is directly incorporated in
the process of solution via the appropriate choice of basis functions.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the cross section of the shielded microstrip line. The

structure is assumed to be uniform and infinite in the z direction.
The infinitely thin strip and the shield case are perfect conductors.
It is also assumed that the substrate material is lossless and its rels-
tive permittivity and permeability are q and p,, respectively.

The hybrid-field components in the microstrip line can be expressed

in terms of a superposition of the TE and TM fields, which are in

turn derivable from the scalar potentials +(”I and ~(~). For kStanCe

~~ _ p
HnL. j—

0
*i(h) (%!/) exp ( – jpz )

[la)

(lb)

h = @ (Crgrapoyz, k, = @(.(lpo)1/2 = k~ [2)

where @is the unknown propagation constant and ~ is the frequency.
The superscripts (e) and (h) are associated with the TM- and
TE-type fields, respectively. The subscripts i = 1,2 serve to desig-
nate region 1 (substrate) or 2 (air). Other field components can be

easily derived from M axwell’s equations.
From this point on, we proceed essentially in a manner similar to

[4]. However, the bounded nature of the geometry of the shielded
structure requires the use of the finite Fourier transform instead of

the conventional Fourier transform over an infinite range. The
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Fig. 1. Cross section of the shielded microstrip line.

Fourier transform’ of the scalar potentials is defined via

/

0, ‘i = 1,2

~,(a) (n,y) = _a ~$p) (z)y) exp ( j&z) dx, (3)
p=e or h

A A

where km = (n — 1/2) ~/a for E. even–H, odd modes and k, = n~/a

for E. odd–HZ even modes (n = 1,2,...).

The next step is to Fourier transform all the field components
using expressions similar to (3) and apply the appropriate continuity
and boundary conditions in the Fourier transform or spectral do-

main. After some mathematical manipulations this leads to

(As)

f%,(n,/3)i=(n ) + f%2(n,(3)~z[n ) = ii(n) (4b)

where

and

.7,(n) =
/
wJ, (z) exp ( j&r) dx

-.

are the transforms of strip currents JZ and J,. Also

where K, and K= are some constants. Notice that ~, and fiz are
unknown since the electric fields E. (z)d ) and Es (z,d ) are ~mknown
for w < I x I < a, though they are zero on the strip. Also note that

(4) is a set of two algebraic equations in contrast to the coupled
integral equations appeartig in the conventional space-domain
analyses. As alluded to earlier, this is the principal advantage of the

present method of formulation.

III. METHOD OF :OLUTION

In this section an efficient method for solving (4) is presented. It
is first noted that the two equations in (4) contain four unknowns

~., ~,, J%, and J?.. However, by usiqg certaiE properties of these
functions, the two latter unknowns E. and Ez can be eliminated

from these equations. To this end, Galerkln’s method is applied in
the spectral domaig for solving these equations. The first step iszto
expand unknown J. and J, in terms of known basis functions J=.

1 Henceforth, Fourier transform referred to in the rest of this paper
will imply finite Fourier transform.

iz(n ) = ; dm~,m(n) (6b)
~=~

where % and dm are unknown constants. The basis functions ~Z,m

and ~z~ must be chosen such that their inverse Fourier transforms
are nonzero only on the strip I z I < w. After substituting (6) into

(4), one takes inner products with the basis functions jo~ and J.,
for different values of i. Thk process yields the matrix equation

; K,m(2,1)cw + ; ~tm(L’U&L = (), i = 1,2,. ..,M (7b)
~=~ ~ =1

where from the definition of the inner product

Kvn@”J(P) = ii .7ic,(n)fi22(n,L3)~,m(nj. (8d)
,,=1

One can prove the right-hand sides of (4) are eliminated via the
use of Parseval~s theorem, because the currents J.,(z), Jc, (z ) and
the field components E, (x,d ) Em(z,c1) are nonzero in the comple-

mentary regions of z.

Now the simultaneous equations (7) are solved for the propaga-
tion constant ~ at each frequency w by setting the determinant of
the coefficient matrix equal to zero and by seeking the root of the
resulting equation. The dispersion property of the microstrip line is

derived from the obtained value of ~.

Before ending this section it is pointed out that in the present
method the solution can be systematically improved by increasing
the size (M + N) of the matrix.

IV. NUMERICAL COMPUTATION AND RESULTS

The choice of the basis functions is important for the numerical
efficiency of the method [4]. If the first few basis functions approxi-

mate the actual unknown current reasonably well, the necessary

‘ size of the matrix can be held small for a given accuracy of the solu-

tion. For the dominant mode, the following forms have been chosen

for J,I and JZI:

I.Trx
—sIn —j Ixl<w

J.,($) = { ‘o w

i o, w<]z~<a.

The Fourier transforms of the above current distributions are given

by

2 sin (~zw )
~El (n) =

{

:3 ,. 2 sin (~nw )
-t—— COS (knw ) —

2.W (2. W)’ 2.W

2[1 – Cos (inW)]
i-

(2.W)’ 1
(9a)

(9b)
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It is worthwhile mentioning here that the forms of .J,l and ~,1 are

identical tothose used by Denlinger [5].
Asimilar expression can beusedfor Mgherorder ~.iand~r,. The

dispersion relation has been calculated for two choices of matrix

size: l)N = l,M = 0and2)N = M=l. Inthefirst csse only the
axial component J,l of the step current is retained. This case may

be called thezero-order approximation while choice2) is the first-

order approximation.
It should be noted that, although the computation of matrix

elements given by (8) involves theevaluationof infinite suznmations,
these summations can be efficiently e~aluated, since for large n each

term inthesummations behaves as (kfiw)-3.
Fig. 2 shows the effective dielectric constant computed by the

present methodu singmatrixsizesl) and 2). The definition of the
effective dielectric constant is

,e,f=(;y=~)

where & is the guide wavelength. The difference of the zero- and
fi#-order approximation is relatively small. Some test calculations

using a larger size matrix have shown that the difference from the
first-order solution is so small that the results cannot be distinguished
on the graphical figure.

Fig. 3 shows the ratio of guide wavelength to the free-space wave-

length. Since the zero- and first-order curves are indistinguishable
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Fig. 2. Effective dielectric constant e,~~versus frequency.
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Fig. 3. Normalized guide wavelength &/k versus frequency.

on thk figure, only the first-order results are plotted. The present
results are compared with the data in [2], and the agreement is

quite good. Experimental results for an open microstrip line reported

in [2] are also reproduced.
Typical computation time onthe CDCG-20 computer (ten times

slower than the IBM 360/75) was about 10-15 s/structure for the

first-order approximation when, the matrix elements were computed
accurately to four digits or better.

V. CONCLUSION

An efficient numerical method has been presented for obtaining

the dispersion properties of shielded microstrip lines. The method,
which is based on Galerkin’e method applied in the spectral domain,
has anumberof numerically attractive features. Numerical results

obtained by the present method have been compared with other
available data.
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Mixed Mode Filters

DAVID A. TAGGART AND ROBERT D. WANSELOW,
SENIOR MEMBER, lEE~

Abstract—Mued mode bazidpass ~ters are described which

utilize alternating TEo1l” and TE~lI 0 circular waveguide cavity modes.

This novel filter configuration exhibits both excellent unloaded Q

and spurious mode response characteristics. The use of mixed

resonant modes makes possible the design of microwave filters for

both in-line side wall connected cylindrical resonators as well as

folded planar filter configurations, whereby cross-couplizig between

selected resonators can be realized.

I. INTRODUCTION

It is well known that the design performance of na~row-band

cylindrical TEo11° mode resonator filters exhibits a very low inser-
tion loss response by virtue of the relatively high unloaded Q that

this mode affords [1]. However, due to the relatively large cavity

(diameter) size required to support the TEuIO mode, resonators
operating in this mode tend to display unwanted spurious passband
resonances. As described by Matthaei and Weller [2] these spurious
resonances ean be remo~ed for all practical purposes via the trapped-

mode concept. To a lesser degree these spurious modes may also be
suppressed by employing alternate right-angle coupling between
adjacent cylindrical cavity walls as indicated by [1, p. 923]. How-
ever, even though the unloaded Q of the trapped-mode TEw” circu-
lar cavity resonator is somewhat higher than that available from
conventional rectangular TEw1 ❑ mode reeonantors, it is still well
below that realizable from conventional TE,,,O mode cavity filters.
In fact, the unloaded Q of the trapped-mode TEO,,O resonator is

aleo less than TEnl1° mode resonators (n > 1) [2, p. 583]. An

additional technique for the elimination of spurious modes is the
utilization of a polyiron mode suppressor on the back side of the

end wall tuning plunger [3]. Unfortunately, the unloaded Q of the
TEOl1° mode is reduced [1, p. 934] when employing dissipative

material.
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