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A Technique for Computing Dispersion Characteristics
of Shielded Microstrip Lines .

TATSUO ITOH, sENIOR MEMBER, IEEE, AND
RAJ MITTRA, ¥ELLOW, IEEE

Abstract—The boundary value problem associated with the
shielded microstrip-line structure is formulated in terms of a
rigorous hybrid-mode representation. The resulting equations are
subsequently transformed, via the application of Galerkin’s method
in the spectral domain, to yield a characteristic equation for the
dispersion properties of shielded microstrip lines. Among the ad-
vantages of the method are its simplicity and rapid convergence.
Numerical results are included for several different structural
parameters. These are compared with other available data and
with some experimental results.

I. INTRODUCTION

With the increasing use of microstrip-line circuits at higher fre-
quencies, a number of workers have studied the dispersion properties
of microstrip lines [1]. Mittra and Ttoh [2] used the singular integral
equation approach for the shielded microstrip line, while Krage and
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the shielded microstrip line followed by a point-matching technique.

Ttoh and Mittra have recently demonstrated the application of a
novel technique, called the spectral-domain analysis, to the problem
of determining the dispersion characteristics of open microstrip
lines [4]. In this short paper the technique just mentioned is ex-
tended to apply to the shielded microstrip-line problem. Some of the
unique features of the method, which is based on the application of
Galerkin’s method in the finite Fourier transform domain, are as
follows: a) the spectral method is numerically simpler and more
efficient than the conventional space-domain techniques. This is due
primarily to the fact that in the present method solutions are ex-
tracted from algebraic equations rather than from coupled integral
equations typically appearing in the conventional space-domain
approaches; b) the usé of transforms allows one to convert convolu-
tions into algebraic products, thus avoiding the necessity of numerical
evaluation of complicated integrals, a process which is often ex-
tremely time consuming; ¢) typically, eigenvalues for the propaga-
tion constants are obtained from a determinantal equation, and the
behavior of the field distribution of the eigenmodes are not readily
discernible [2]. However, in the present method the physical nature
of the field corresponding to each mode is directly incorporated in
the process of solution via the appropriate choice of basis funetions.

II. FORMULATION OF THE PROBLEM

Fig. 1 shows the cross section of the shielded microstrip line. The
structure is assumed to be uniform and infinite in the z direction.
The infinitely thin strip and the shield case are perfect conductors.
It is also assumed that the substrate material is lossless and its rela-
tive permittivity and permeability are ¢, and p,, respectively.

The hybrid-field components in the microstrip line can be expressed
in terms of a superposition of the TE and TM fields, which are in
turn derivable from the scalar potentials ¢(® and y®. For instance

. ktZ _ BZ .
Eu=] 5 Y@ (2,y) exp (—jBe) {la)
k2 — g
H, = j ————¢:®(z,y) exp (—jBz) (1b)
ki = wlepreopo)V?, k2 = w(eomo)V? = ky (2)

where g is the unknown propagation constant and w is the frequency.
The superscripts (¢) and (k) are associated with the TM- and
TE-type fields, respectively. The subscripts ¢ = 1,2 serve to desig-
nate region 1 (substrate) or 2 (air). Other field components can be
easily derived from Maxwell’s equations.

From this point on, we proceed essentially in a manner similar to
[4]. However, the bounded nature of the geometry of the shielded
structure requires the use of the finite Fourier transform instead of
the conventional Fourier transform over an infinite range. The



SHORT PAPERS

®

/ rzwa‘)yﬁp

1
-

X

2a 7/ —!
substrate

Fig. 1. Cross section of the shielded microstrip line.

Fourier transform? of the scalar potentials is defined via
. o " i=1.2
Vi@ (nyy) = / ¥i@ (x,y) exp ( jkaz) ds, (3)

e p=e or h
where k, = (n — 1/2)7w/a for E, even—-H , odd modes and #, = nr/a
for B, odd~H, even modes (n = 1,2,+++).

The next step is to Fourier transform all the field components
using expressions similar to (3) and apply the appropriate continuity
and boundary conditions in the Fourier transform or spectral do-
main. After some mathematical manipulations this leads to

Gu(n,8)Jz(n) + Gun,g)J.(n) = E.(n) (4a)
Cn(n,8)T:(n) + Gu(n,8).(n) = Ea(n) (4b)
where
G = G = hoB(v2tanh voh + pys tanh yid) /det

Gr = [(emrki® — 82)y2 tanh vah + pr (ke? — 82)v1 tanh 4,d]/det

(5b)
G = [errke> — ku)ys tanh yoh + p (k2 — £e2)v1 tanh vid]/det

{5¢)
det = (v1 tanh yid 4+ ey tanh voh) (v coth vid + pry2 coth v2h)

(5d)

and

Jon) = /w Jz(x) exp (jlgnac) dx

Jin) = / J:(2) exp (jignx) dx
are the transforms of strip currents J, and J.. Also

E.n) = K. f B.(z,d) exp ( jka) do

E,tn) = Kf E(z,d) exp (jEax) dx

where K, and K, are some constants. Notice that E. and B, are
unknown since the electric fields E.(x,d) and E,(x,d) are unknown
for w < | z| < a, though they are zero on the strip. Also note that
(4) is a set of two algebraic equations in contrast to the coupled
integral equations appearing in the conventional space-domain
analyses. As alluded to earlier, this is the principal advantage of the
present method of formulation.

III. METHOD OF “OLUTION

In this section an efficient method for solving (4) is presented. It
is first noted that the two equations in (4) contain four unknowns
Je, Jo, E., and .. However, by using certain properties of these
functions, the two latter unknowns E, and E, can be eliminated
from these equations. To this end, Galerkin’s method is applied in
the spectral domain for solving these equations. The first step is to
expand unknown J, and J, in terms of known basis functions Jam

! Henceforth, Fourier transform referred to in the rest of this paper
will imply finite Fourier transform.

(ba)
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and Jom:

IiMz Mz

Jo(n) Cadem(n) {6a)
1

Ao o (0)

1

Jo(n)

= (6b)
where ¢, and d,, are unknown constants. The basis functions jm
and J... must be chosen such that their inverse Fourier transforms
are nonzero only on the strip | | < w. After substituting (6) into
(4), one takes inner products with the basis functions J;; and J,,
for different values of 4. This process yields the matrix equation

M N .
Z K%Yy + 2 K,n®9d, =0, i=12.+- N (7a)
m=1 m=1
M N
S Kn®en + 3 Kpu®bdm =0, 1 =12-+++M (7b)
m=1 m=1

where from the definition of the inner product

Kin®0(8) = 2 Joutn)Gu(n,8)Fom (n) (8a)
n=1

Kn®(8) = 3 J2(n)Gra(n,8)J o (n) (8b)
n=lL

Kim(z'l)(ﬁ) = E sz(n)('im(nyﬁ)jxm(n) ’80)
n=1

K..®2(8) = > Joi(0) G (n,8) e (n). (8d)

i

1

One can prove the right-hand sides of (4) are eliminated via the
use of Parseval’s theorem, because the currents J.,(z), J..(z) and
the field components E.(z,d) E.(x,d) are nonzero in the comple-
mentary regions of .

Now the simultaneous equations (7) are solved for the propaga-
tion constant 8 at each frequency w by setting the determinant of
the coefficient matrix equal to zero and by seeking the root of the
resulting equation. The dispersion property of the microstrip line is
derived from the obtained value of 8.

Before ending this section it is pointed out that in the present
method the solution can be systematically improved by increasing
the size (M + N) of the matrix.

IV. NUMERICAL COMPUTATION AND RESULTS

The choice of the basis functions is important for the numerical
efficiency of the method [47]. If the first few basis functions approxi-
mate the actual unknown current reasonably well, the necessary
size of the matrix can be held small for a given accuracy of the solu-
tion. For the dominant mode, the following forms have been chosen
for J 4 and J:

1 r|®

[~[1+ = ], le| <w
Jalz) = 2w w

0, w<|z|l<a

[1 .o

~sin —, |z <w
Jxl(x):‘i/w w

[0, w<|zl <a

The Fourier transforms of the above current distributions are given
by

N 2 sin (Faw) 3 - 2 sin (Fuw)
Jaln) = < < cos (baw) — —F——
RaW (knw)2 W
2[1 — P
2LL = cos )| g,
(Rrw)?
~ 2w sin (},z\nw)
Jaln) = ——. (9b)

(ﬁnwﬁ — 72
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It is worthwhile mentioning here that the forms of J, and J. are
identical to those used by Denlinger [5]. N .

A similar expression can be used for higher order J.; and Ji.. The
dispersion relation has been calculated for two choices of matrix
size: 1) N =1, M = 0and 2) N = M = 1. In the first case only the
axial component J .1 of the step current is retained. This case may
be called the zero-order approximation while choice 2) is the first-
order approximation.

It should be noted that, although the computation of matrix
elements given by (8) involves the evaluation of infinite summations,
these summations can be efficiently evaluated, since for large n each
term in the summations behaves as (k.w).

Fig. 2 shows the effective dielectric constant computed by the
present method using matrix sizes 1) and 2). The definition of the
effective dielectric constant is

x 2 B 2
NG

where A, is the guide wavelength. The difference of the zero- and
fivnt-order approximation is relatively small. Some test calculations
using a larger size matrix have shown that the difference from the
first-order solution is so small that the results cannot be distinguished
on the graphical figure.

Fig. 3 shows the ratio of guide wavelength to the free-space wave-
length. Since the zero- and first-order curves are indistinguishable
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on this figure, only the first-order results are plotted. The present
results dre compared with the data in [2], and the agreement is
quite good. Experimental results for an open microstrip line reported
in [2] are also reproduced.

Typical computation time on the CDC G-20 computer (ten times
slower than the IBM 360/75) was about 10-15 s/structure for the
first-order approximation when the matrix elements were computed
accurately to four digits or better.

V. CONCLUSION

An efficient numerical method has been presented for obtaining
the dispersion properties of shielded microstrip lines. The method,
which is based on Galerkin’s method applied in the spectral domain,
has a number of numerically attractive features. Numerical results
obtained by the present method have been compared with other
available data.
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Mixed Mode Filters

DAVID A. TAGGART axp ROBERT D. WANSELOW,
SENIOR MEMBER, IEEE

Abstract—Mixed mode bandpass filters are described which
utilize alternating TEy; ° and TE,;; ° circular waveguide cavity modes.
This novel filter configuration exhibits both excellent unloaded @
and spurious mode response characteristics. The use of mixed
resonant modes makes possible the design of microwave filters for
both in-line side wall connected cylindrical resonators as well as
folded planar filter configurations, whereby cross-couplinig between
selected resonators can be realized.

I. INTRODUCTION

It is well known that the design performance of narrow-band
cylindrical TEe° mode resonator filters exhibits a very low inser-
tion loss response by virtue of the relatively high unloaded @ that
this mode affords [1]. However, due to the relatively large cavity
(diameter) size required to support the TEg° mode, resonators
operating in this mode tend to display unwanted spurious passband
resonances. As described by Matthaei and Weller [27] these spurious
resonances can be removed for all practical purposes via the trapped-
mode concept. To a lesser degree these spurious modes may also be
suppressed by employing alternate right-angle coupling between
adjacent cylindrical cavity walls as indicated by [1, p. 9237. How-
ever, even though the unloaded @ of the trapped-mode TEy;° circu-
lar cavity resonator is somewhat higher than that available from
conventional rectangular TE;u® mode resonantors, it is_still well
below that realizable from conventional TEo,° mode cavity filters.
In fact, the unloaded @ of the trapped-mode TEw:° resonator is
also less than TE.;;° mode resonantors (n > 1) [2, p. 583]. An
additional technique for the elimination of spurious modes is the
utilization of a polyiron mode suppressor on the back side of the
end wall tuning plunger [37]. Unfortunately, the unloaded @ of the
TEe°® mode is reduced [1, p. 934] when employing dissipative
material.
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